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Abstract. A decktion reno"ion is conshucted and used b produce an exact RO recursion 
relation for the Pons mcdel on onedimensional quasilattices. The geomaieal properties and 
critical pmpenies of some one-dimensional quasilattices are discussed. 

1. Introduction 

The experimental discovery by Schechtman etal [I] of a metallic solid phase of AI-Mn 
alloy with icosahedral symmetry has considerably revived interest in quasicrystals. The 
study of one-dimensional models already reveals a large variety of consequences of the 
lack of periodicity in these systems [2-4]. It is interesting to investigate the effects of 
quasiperiodicity and self-similarity on the phase transition and the critical phenomena. 
Recently, onedimensional quasicrystals have attracted much attention in the study of 
statistical mechanics of phase transitions [S-81, because classical spin models, such as 
the Ising and Potts models, are soluble for these lattices. Some very powerful approaches, 
such as transfer matrix techniques and the decimation renormalization method were used. 

In this paper we report a decimation renormalization group treatment for the q-state 
Potts model (the king model is a special case of q = 2) on one-dimensional quasilattices. 
The self-similarity properties of quasilattices make the RG method quite an effective method 
of treatment. Furthermore the method can also provide an efficient method of numerical 
calculation with finite magnetic field. In addition, the renormalization relation may be used 
to obtain the Yang-Lee singularities [IO]. 

2. Definition of model 

A general onedimensional quasilattice can be generated from a finite set of basic cells by a 
generalized induction procedure. We define the orianal pattem as stage 0 of the sequence, 
then stage n -t 1 is obtained inductively from stage n by the following substitution rule: 
U .+ Tu where a represents a column vector: a = (A, B)T; and T = (ti j)  is a 2 x 2 matrix 
with non-negative integer entries. Matrix T and its successive applications fully determine 
the sequence. Several examples follow. 

Rule 1: the inflation rule is A + AB and B -+ A 
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Rule 2 

Tz = ( i  i) + A +  ABB -+ ABBAA+ .. . 
Rule 3: 

T3 = (k  :) =SA +AB + AEA4 -+ .. . 

T4 = (i :) = + A  + ABB -+ ABBABAB -+ _. .. 
Rule 4 

The above four cases are non-periodic structures, but the structures generated are nonetheless 
fully deterministic and highly ordered. As the length of the pattern goes to infinity, the ratio 
between the total number of different elements approaches a constant value. By solving the 
characteristic polynomial &(x) associated with the inflation rules TI -+ T4. we get four 
sets of eigenvalues: 

TI :((Z+JS)/2, (l-JS)/2];’Tz:(2,-1]; T3:[2,-1); T4:(1+2/2, I-&]. 

It is noticed that the characteristic polynomial P+) has only one root greater than one in 
absolute value for rules 1 and 4. The one-dimensional lattices defined by these two rules 
can be obtained by the projection method, and are strictly quasiperiodic. 

In our model, we only consider the interaction between nearest-neighbour spins, and 
zero field is applied. Two kinds of coupling parameters KA and KB are introduced. The 
q-state Potts model Hamiltonian on the quasilattices can be written as follows: 

H 
KijCoj (NN =nearest neighbour). - - = ~  

KT ij=“ 

Kij = K A  if i and j are connected by bond A, Kij = KB if i and j are. connected by bond 
B, where Kij is the ‘coupling’ between the site spins i and j; ui is the Potts spin associated 
with site i and takes q possible values (ui = 1.2,. . ., q), uq,,; is the Kronecker function. 

3. Critical points and critical exponents 

Let us define two matrices as follows: 

(ul.ilu’) = exp(KAS,,.) 

(uldlu’) = exp(KBG,&). 
(1) 

Obviously the two matrices are symmetric about their diagonal and commute with one 
another, and the product of these matrices still keeps the above properties. By means of 
equation (1). we get the following expressions which we will use later: 

[Ala. = eKA 1.il.p = 1 

[PI mm = ezK. + 4 - 1 [AZ], = 2eK” + q - 2 

[ i j j  am - - e &+KB +q - 1 

[.iiP] 
[ A i 2 ] ] ,  = e  K* ( 

[A&D = e K A  + eKB + q - 2 

= eKA(ezKB + q - 1) + (q - 1)(2eK~ + q - 2) 
IIa 

+ q - 2) + (ezKn + q - I) + (q - 2)(2eK. + q  -2). 
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(a) (b) 
Figure 1. A schematic RG transformation for rule 1. (a) Decimating u2 and leaving a, and q 
fixed in unit I; @) leaving SI and 02 fixed in unit 2. 

(a) (b) 
Figure 3. A schematic RC transformation for mle 3. (a) Decimating 9 and leaving 01 and q 
fixed in unit 1; @) decimating 02 and leaving 01 and a3 hed in unit 2. 

(4 (b) 
F w e  4. A schematic a0 transfoxmation for rule 4. (a) Dedm!ing 02 and 03, leaving 01 and 
ad fixed in unit 1; @) decimatin g uz and leaving CI and us fixed in unit 2. 

To construct recursion relations we consider the two basic units as the components of 
the original nth construction stage. By integrating over the spins on some sites and leaving 
the remainder fixed, we obtain a renormalized construction which has the components of 
the (n - 1)th constluction stage. The RG procedures are shown schematically in figures 1-4. 
They respectively correspond to the following expressions: 



It is clear that K l  = K; = 03 is one of the fixed points, because the total order of 
powers of ex in the numerical is higher than in the denominator where ex denotes eK* 
and eKn. The recursion relations have other fixed points eK; = eKi: T1 : (1, 1 - q}; 

Originally q was defined as the number of spin states and has to be an integer; here q 
is interpreted as a material parameter which may be varied arbitrarily. 

The point eK* = 1 corresponds to T = 03, which is an infinite-temperature stable 
fixed point, and the p i n t  eK' = 03 to T = 0, which is a zero-temperature unstable fixed 
point. The domain of attraction D(1) collects all starting points in parameter ek space which 
come arbitrarily close to unity after definite renormalization transformation. In the spirit 
of renormaliiation theory D(1) is identified as the high-temperature phase, whereas D ( w )  
stands for the magnetic low-temperature phase. As regards points 1 - q AND (2 - &)/2, 
they have a special role in discussing Yang-Lee singularities [lo]. The corresponding 
renormalization equations (2H5) are technically rational mapping of the complex plane 
when the temperature T is extended kom the real axis into the complex plane. The theory 
of  iteration of such mapping was established around 1920 by Julia [ll] and Fatou [12]. 
This establishes the remarkable connection between phase transitions and Julia sets, which 
will help us to understand the nature of the Yang-Lee singularities. But the physical 
interpretation is still an open question. 

Here we discuss the critical properties at zero temperature. By calculating the 
linear recursion relations around the zero-temperature fixed points, we obtained the four 
renormalized matrices: 

Tz:{l, (2-q)/2, l -q};T3:(1,  l - q ] ; T * : ( l ,  1-41, 
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Compared with the substitution matrices Tl-Ta, it is shown that these renormalization 
matrices are exactly equal to their substitution matrices. 

The critical correlation length exponent is related to the largest eigenvalue, u-l = 
(In 1)/In b) where b is the geometrical scaling factor and 1 is the eigenvalue of 
the renormalized matrices. The renormalization group transformation is a decimation 
transformation, which mimics the deflation rule. The rescaling factor b is equal to the 
positive eigenvalue of the substitution matrix TI-T~, respectively. Since the renormalized 
matrices are exactly equal to their substitution matrices, U is equal to unity. 

4. Conclusion 

We have performed a decimation renormalization for the Potts model on one-dimensional 
two-tile non-periodic lattices in the absence of a magnetic field. The recursion equations 
are produced and the immediate calculations show that the system has no phase transition 
at finite temperature. The properties of critical points and critical exponents are discussed. 
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